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PS3GRID.NET: Building  
a distributed supercomputer 
using the PlayStation 3

Introduction
The PlayStation 3 (PS3) games console, launched in 2006, 
is the latest in Sony’s line of games consoles which have 
been distinguished by their technical capabilities and inno-
vative design. In the case of the PS3, it is the first com-
modity device to contain the IBM Cell processor. The Cell 
processor is remarkable for its novel multi-core architecture 
that is designed to optimize the types of computation par-
ticularly common in graphical and games applications. As 
well as providing a boon for gamers this processor, and thus 
the PS3, is of particular interest for computational scien-
tists eager to take advantage of the cheap high-performance 
computing power. 

Although the Cell processor is over an order of magni-
tude faster than standard Intel or AMD processors for some 
scientific applications1, it is still insufficient to satisfy the 
requirements of many modern computer simulations. In the 
field of molecular modeling in particular it is routine to use 
hundreds of processors in a dedicated parallel computer for 
a single simulation. Our goal in creating PS3GRID was to 
build an infrastructure that allows us to treat a collection of 
individual PS3 consoles as a distributed molecular simula-
tion computational environment.

Inevitably, making efficient use of a collection of PS3 
consoles is much more difficult than using dedicated high 
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performance computing resources, especially as we wished 
to allow owners of PS3s to volunteer spare time on their 
consoles to our project. Two problems in particular required 
our attention:

reliability and trust»» : because the PS3s we wish to use are 
outside of our control, the pool of machines available to 
us must be treated as transient: a volunteer may choose 
to add or remove their PS3 at any time. Our infrastructure 
must accommodate this and be able to correct for the loss 
of results arising from an incomplete simulation. Addition-
ally, the results from completed simulations must be care-
fully checked to ensure that they are correct. Errors could 
arise from defective hardware or from malicious users 
deliberately altering the behaviour of our simulations. 
loose coupling»» : high performance computing (HPC) 
machines have dedicated low latency, high bandwidth 
communications between processors. This allows a paral-
lel application to scale efficiently over many processing 
cores. The PS3, in contrast, has only a general-purpose 
ethernet network that is unsuited to supporting com-
munications sensitive parallel applications. The issue is 
further exacerbated when the individual PS3s are distrib-
uted around the world and connected only via the general 
Internet.
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To address the first issue, we chose to employ the Berkeley 
Open Infrastructure for Network Computing (BOINC) frame-
work17. It is designed explicitly for constructing distributed 
computing systems from volunteered resources and fitting 
our requirements perfectly. It was originally developed for 
one of the first community distributed computing projects, 
Seti@HOME2, and has been employed by dozens of other 
projects since. 

The second problem, that of efficiently using the 
resources, was solved by the combination of the develop-
ment of a molecular dynamics (MD) code highly optimized 
for the Cell processor1 and then by applying novel statisti-
cal techniques that allow us to achieve our goals using an 
ensemble of short simulations3. This allows us to allocate 
work to each PS3 independently, rather than attempt to scale 
a single simulation across multiple PS3s in parallel.

The PS3 resources contributed to PS3GRID have allowed 
us to perform classical molecular dynamics simulations of 
biomolecular systems in far higher detail than would have 
been practical even with access to dedicated HPC resources, 
largely because of considerations of costs. 

Molecular Dynamics of Biomolecular Systems
Molecular dynamics (MD) is a simulation methodology 
which enables the modeling of very large molecular sys-
tems at an atomic level. The atoms are treated classically, 
with their interactions approximated with an empirical force 
field. Each atom is represented using classical equations of 
motion (Newton’s equations of motion) and evolves accord-
ing to a force field which models the chemical nature of each 
atom (carbon, oxygen, hydrogen and so on) in its local envi-

ronment. In principle, each atom interacts with all the others 
within a certain interaction radius, as, at long distances, the 
interaction between atoms is weaker. This cut-off distance 
is usually between 10 to 12 Å (1 Ångstrøm is 10-10 meters). 
Each step of a molecular dynamics simulation usually corre-
sponds to just 1 fs (10-15 seconds). Both factors contribute to 
the large computational cost of molecular dynamics simula-
tions: bridging molecular, atomistic scales with biological 
scales (micro – to milli-seconds) is therefore a big challenge 
in computational biology. These characteristics of MD algo-
rithms limit simulations to modeling at most a few nanosec-
onds of the evolution of the system, even when run on HPC 
systems; Many orders of magnitude less than is required to 
model biological processes, which commonly occur over 
timescales of micro – or milliseconds. If we manage to over-
come this limitation, then the biomedical applications of 
molecular dynamics would be much broader.

The process of ion traversal across membrane channels 
is particularly important for cell regulation. For the pur-
pose of testing PS3GRID, we studied this process using a 
simple model of a single Gramicidin A pore in a biological 
cell4. Gramicidin A is a polypeptide molecule with antibiotic 
properties. It acts on the cell wall of a bacterium, creating 
a trans-membrane pore that is selectively permeable to ions 
(figure 1).

This disturbs the concentration of ions within the cell, 
leading to cell death. Although extensively investigated, 
previous computational studies have failed to recover the 
energetic properties of the pore channel7.

Recently developed statistical techniques8, 9, 10 allow us to 
take a novel computational protocol which, although not 

a) 0.5 ns b) 0.75 ns c) 1.0 ns d) 1.2 ns

Figure 1 Four snapshots at different simulated times of the molecular dynamics trajectory of a K+ ion pulled across the channel.  
The K+ ion is shown in green. The simulated time of each configuration is: a) 0.5 ns, b) 0.75 ns, c) 1.0 ns, d) 1.2 ns. Membrane structure is 
not shown for clarity.
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Why the Cell Processor?
Historically, gains in processor performance have been 
achieved primarily by rising clock speeds which has been 
accomplished by ever finer fabrication processes. In recent 
years, it has become increasingly difficult to continue to 
increase clock speeds because of limits in process technology 
and the increasing power demand of faster processing cores. 
Despite this, Moore’s Law, the empirical observation that the 
density of transistors on an integrated circuit doubles every 
18 months has continued to hold true. 

In order to continue to improve processor performance, 
manufacturers have been forced to reconsider their “single 
fast core” design and take advantage of the greater transis-
tor counts to build CPUs containing multiple independent 
processing cores.

Although the aggregate performance of multi-core CPUs 
has continued to increase, because the cores are independent 
it is no longer possible for serial, single-threaded programs 
to take advantage of the increased processing capability. 
Instead, it is necessary for codes to be parallelized: adapted 
to allow the computation to be performed concurrently on 
multiple cores.

As well as the increased difficulty in making efficient 
use of the cores within the processor, multi-core CPUs are 
further limited by memory bandwidth. Minimizing the cost 
of accessing main memory has been a long-term challenge 
for processor designers and has two problems that must be 
considered and that are exacerbated by multi-core architec-
tures:

latency: for modern processors, it typically takes hun-»»
dreds of clock cycles fpr main memory to respond to 
a memory access request. It is now routine for proces-
sors to use fast on-die cache memories into which main 
memory contents are speculatively read. However, if the 
cache cannot satisfy a read request, the full cost of the 
memory operation is incurred by the program. Similarly, 
caches allow writes to main memory to be completed 
asynchronously but cannot fully hide main memory 
latency if large quantities of data are being written.
bandwidth»» : the efficiency with which a processor can 
operate on large blocks of data is often limited by the rate 
at which data can be transferred across the link to main 
memory. If this connection has insufficient capacity, the 
processor can become starved and the full cost of access-
ing memory will be incurred. As the core count increases, 
the fraction of memory bandwidth available per-core 
diminishes, increasing the likelihood of starvation.
The Cell processor is the first general-purpose processor 

to implement a multi-core architecture that has features spe-
cifically designed to mitigate the effects of this memory wall. 
This design allows the Cell processor to overlap computation 
with memory access and enables carefully designed applica-
tions to hide the cost of the latter. 

requiring any fewer computing resources than previous 
methods, does allow us to replace a long simulation with an 
ensemble of much shorter ones. In each simulation within 
the ensemble, the ion is forced through the protein channel 
at a much greater rate, sufficient to drive the system away 
from its equilibrium. By subjecting these non-equilibrium 
simulations to statistical analysis11, it is possible for us to 
recover an estimate of the equilibrium free energy profile (a 
fundamental thermodynamic quantity of a physical system3) 
by computing averages over repeated independent runs. 

The ability to recover the free energy profile from an 
ensemble of simulations has important practical implica-
tions. We are now able to use multiple compute resources 
simultaneously. Unfortunately, our system is still sufficiently 
large that the short simulations cannot be practically per-
formed on even high-end commodity workstations, requir-
ing still 24-32 processors on dedicated HPC resources for 
each run.

The PS3, with its Cell processor, and the PS3GRID infra-
structure allow us to bridge this performance gap and run 
the ensemble simulations directly on undedicated, commod-
ity systems.

Cell Processor Architecture
The present version of the Cell processor comprises one gen-
eral purpose PowerPC processing element (PPE) which runs 
the operating system and acts as a standard processor and 
8 independent, specialized, synergistic processing elements 
(SPEs). Main memory can be accessed only by the PPE core: 
each SPE must use its limited in-chip local memory (local 
store) of 256 KB. This memory is accessed directly without 
any intermediate caching. Each core (PPE or SPE) features 
a single instruction multiple data (SIMD) vector unit. The 
SPEs can, in total, perform about 230 GFLOPS at 3.2 GHz for 
single precision floating-point operations. 

Currently, the SPEs perform floating-point operations an 
order of magnitude slower in double precision than in single 
precision. It is expected that the next revision of the Cell 
processor will contain better support for double precision 
operations. The main elements of a SPE are a data process-
ing core, also called the synergistic processing unit (SPU), 
and a memory flow controller (MFC) which handles commu-
nications between main memory and the local memory of 
the SPE (local store). The SPU can only access the local store 
using a high bandwidth, low latency link without interme-
diate caching which can load data into the registers of the 
SPU in just few clock cycles. A direct memory access (DMA) 
operation managed by the MFC allows to copy data from 
main memory to the local store. The DMA is initiated by the 
SPE asynchronously allowing for overlapping communica-
tion (MFC) and computation (SPU), therefore partially hiding 
the time of data transfer into the local store.
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PC 1 SPE 2 SPE 4 SPE 6 SPE

Time (seconds) 73.3 20.4 10.9 6.07 4.47

Speed-up relative 
to 2GHz Opteron

1 3.6 6.7 12.1 16.4

Speed-up relative 
to 1 SPE

1 1.9 3.4 4.6

Figure 2 Performance of the CellMD software run on PS3. Execution time (top) and speed up factor (bottom) running Gramicidin A for  
50 time-steps on a 2 GHz Opteron PC and 1, 2, 4 and 6 SPEs (estimates are computed over longer runs and rescaled to 50 iterations).

Optimizing for the Cell Processor
All this computational power comes at the cost of ease of 
use: to make best use of the processor codes must be care-
fully multi-threaded and vectorized. The Cell processor can 
be programmed as a multi-core chip with nine heteroge-
neous cores using standard ANSI C and relying on the librar-
ies from the IBM system development kit (SDK)12 to handle 
communication, synchronization and SIMD computation. 
The programming paradigm is an important aspect which 
distinguishes the Cell processor from other specialized pro-
cessors, for example graphical processing units (GPUs). In 
fact, recent products like Nvidia’s Complete Unified Device 
Architecture (CUDA) SDK13 reduce the difficulty of program-
ming GPU devices by a non-standard C-like programming 
language. On the contrary, the Cell processor adopts a com-
mon C approach using a set of advanced but standard pro-
gramming techniques and languages like C/C++, already in 
use on standard multi-processor machines, supported by a 
Cell processor-specific system library. 

The overall performance is strongly dependent on the the 
effective use of Cell hardware which is largely left to the 
code and compiler. However, each step in the optimization 
can be taken incrementally. An existing application would 
run on the Cell processor by a simple re-compilation of the 
code using only the PPE core, with no effort, but also with-
out advantages from a performance viewpoint. In order to 
obtain the highest performance, it is necessary to use all the 
SPEs, vector hardware and to adapt to the memory access 
architecture.

Vectorization of the code is very important because the 
SPEs are not optimized to run scalar code and handling 

unaligned data. A SIMD add instruction spu_add allows the 
computation of four simultaneous floating-point add opera-
tions by operating on a 128 bit data type (a vector float). 
These intrinsic primitives are for the most part derived from 
the more standard AltiVec instruction calls in the PowerPC 
element (e.g. vec_add). The compiler automatically aligns 
vector types to 16 byte memory boundaries which can then 
be loaded directly into the SPE registers. Manual data align-
ment and padding are also necessary for data communica-
tions between local stores and main memory.

After vectorization of the compute-intensive parts of the 
code, the work must be distributed on multiple SPEs using 
multi-threaded programming techniques that entail handling 
synchronization between processing threads running on the 
9 processing cores of the Cell processor. The libraries of the 
SDK provide several ways to control SPE threads which in 
most cases are similar to other libraries providing threading 
primitives. It is also best to avoid conditional branching in 
the computational intensive parts of the code because SPEs 
lack appropriate hardware for branch prediction.

Optimizations discussed so far would be beneficial to 
standard processors as well (for instance using the stream-
ing SIMD extensions (SSE) of Intel processors). Unique to the 
Cell processor is the SPE core design which makes all these 
optimization steps crucial for performance and the local 
store which provides very fast access to local data. The SPE 
core design provides reduced power consumption and higher 
clock frequencies, while the memory architecture is designed 
to mitigate the high latency incurred in access main mem-
ory. This new memory architecture requires the programmer 
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to consider the limited size of the local store of each SPE 
and carefully plan the communication between local store 
and main memory to maximize the overlap of computation 
and communication. Overall, good knowledge of standard 
parallel and vector programming techniques represents the 
largest learning obstacle to program the Cell processor, as 
well as standard multi-core chips.

CellMD
The molecular dynamics engine of this project is based on 
CellMD, an MD application optimized to run on the Cell pro-
cessor1, 14. In summary, comparing the standard processor 
version of the code compiled on a 2GHz Opteron based PC 
with the Cell-tailored version of the software running on 
an IBM Cell blade, a speedup relative to the Opteron refer-
ence system of approximately 19 times is obtained reliably 
for many different molecular system sizes, even with just 
2,500 atoms. A description and benchmarks of this code on 
the Cell processor are reported in1. For PS3GRID, we use a 
reduced version adapted to be used within the BOINC infra-
structure. Figure 2 shows benchmark results obtained run-
ning CellMD a simulation of a 30,000 atom Gramicidin A 
model on a PS3.

The top graph shows the average execution time for 
50 time-steps whilst the lower gives the speed-up factor 
obtained running CellMD on a 2GHz Opteron PC and on a 
PS3 using 1, 2, 4 and 6 SPEs. 

We note that the fastest execution time (the maximum 
speed-up) is obtained when running the simulation on our 
development system, an IBM Cell blade server, which allows 
for the use of all the 8 SPE present in a Cell processor15. 
However, the PS3 seems to be faster on the same number of 
SPEs. Unlike the blade server, the Cell processor in the PS3 
has only 7 active SPEs. Furthermore, only 6 are available 
when running Linux on the PS3.

Despite this, the speed up factor using only 6 SPEs is 
greater than 16 times, still a very good performance/cost 
ratio. This speedup easily balances the effort needed to put 
together a distributed computing environment which can 
enable us to perform molecular simulations in a distributed 
environment. Also, we consider that this speed-up is criti-
cal to the successful deployment of a grid of PS3 commit-
ted to biomolecular simulations due to the intrinsic cost of 
molecular simulations work units and the unreliability of the 
resources in network distributed computing settings.

Although the PS3’s 256 MB of main memory is small 
compared to modern workstation or server standards, it is 
perfectly adequate for our application: a molecular dynam-
ics simulation of a 30,000 atom system requires less than 
10 MB of dynamic storage. Whilst the PS3’s memory is suf-
ficient to allow us to model systems with approximately half 
million atoms, in practice such a large simulation would be 
impractically slow.

Double-precision arithmetic is often considered a pre-
requisite for serious scientific and numerical computing as it 
minimizes the accumulation of round-off error and allows a 
much greater range in comparison to single-precision math. 
However, for molecular simulations this is not the case and 
single precision furnishes a valid alternative to double pre-
cision1. In the general case, it is often possible to conduct 
the majority of a computation in single-precision, reserv-
ing double precision for ill-conditioned and critical sections. 
The techniques used to achieve this are described in further 
detail in16.

PS3GRID
We chose the Berkeley Open Infrastructure for Network 
Computing17 (BOINC) as the middleware to enable willing 
PS3 users to easily share the computational burden of our 
scientific application. The BOINC software platform provides 
end-to-end distributed computing infrastructure that pro-
vides generic user authentication, file transfer, client-side 
and work-flow management functions. Its modular structure 
permits it to be easily customized for the requirements of 
any given project.

A sophisticated client-side tool provides a wrapper for 
the project application (the scientific payload code). This 
approach minimizes the work required to adapt a code to 
operate as a BOINC-aware application. However, the collab-
oration of up to tens of thousands of not-trusted contribu-
tors using a public network poses serious challenges to the 
availability, stability and reliability of such an infrastruc-
ture. In order to mitigate these problems, BOINC middleware 
provides solutions such as digital-signing of binaries, redun-
dant calculation and advanced work scheduling. In addition, 
the BOINC code is open and can be customized for specific 
projects needs. The wide BOINC user base and the increas-
ing number of computational projects (and related scientific 
results) that use it demonstrate the maturity and efficiency 
of such middleware. 

As mentioned above, the PS3 game console has attracted 
considerable interest in the high performance computing 
community, sparking a variety of projects that rely on its 
innovative architecture and peak performance. In particu-
lar, the implementation of our research project benefits from 
the fact that Terrasoft has recently adapted its Yellow Dog 
Linux (YDL)18 distribution to work on a PS3. We therefore 
can install Linux on a PS3 game console, which can con-
sequently be considered as a fully functional and equipped 
personal computer. More importantly, Linux acts as glue 
between BOINC (client)

middleware and Cell hardware, and this allows us to fol-
low the standard procedure to set up a desktop distributed 
computing project using BOINC software, which is the con-
figuration of data and scheduling servers in combination 
with the arrangement of a suitable set of executable and 
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data files to be downloaded using the BOINC client by vol-
unteering users (see17 for details).

On the client side, each PS3 performing processing for a 
BOINC project runs a BOINC client which provides a harness 
in which the application code is run. The client conducts 
all communications with the project servers and performs 
work-unit file staging and controls when the application 
code is running according to a policy set by the system’s 
operator. A C API and library provides a set of routines that 
the application code can use for communicating with the 
BOINC client17. Each computational task farmed out to client 
Cell processors via the BOINC infrastructure is an indepen-
dent entity known as a ̀ work unit’. These are specified by the 
set of input files and by the names of the resultant output 
files that the application code is expected to produce. The 
only difference between our project and other well known 
projects that use BOINC (such as SETI@Home2) is that the 
underlying computing resources are PS3 game consoles 
instead of personal computers. As a consequence, what we 
report here can be replicated with minimal effort once other 
efficient Cell-tailored software will become available.

Computational protocol
To recover the ion-channel permeability the Gramicidin A 
pore, we first construct an atomistic model of the protein 
embedded within a lipid bilayer representative of a cell 
membrane. The system is hydrated to simulate realistic con-
ditions in the cell. A potassium ion K+ is placed within the 
trans-membrane pore formed by the Gramicidin A protein.

We then apply an artificial pulling force to the ion, forc-
ing it back and forth along the channel. This forward-reverse 

steered molecular dynamics protocol is based on the Crooks’ 
formula11. Crooks formula allows to reconstruct free energy 
differences ΔA0 ––> 1 between two states from a set of non-
equilibrium molecular dynamics simulations which connect 
the two equilibrium end-states. This technique is known as 
steered molecular dynamics (SMD).

The total free energy profile of crossing is computed using 
the protocol described by3. For each pulling experiment, the 
realization of the work produced by the pulling force over 
the reaction coordinate is returned. This work is computed 
from the instantaneous force acting on the pulled ion at 
each ion position (figure 3a).

The ion transfers the molecular forces to the pulling 
spring (figure 3b) acting as a probe for the local molecular 
potential energy surface which shows several binding sites 
with steep forces along z. Binning the data over 100 inter-
vals we compute the average work at each bin position. Dif-
ferent runs produce different non-equilibrium realization of 
the work (figure 3b) which are then averaged to obtain the 
free energy.

The PS3GRID distributed computing environment par-
ticularly suits this method as many pulling simulations can 
be broken into smaller work-units and off-loaded and run 
simultaneously on PS3s of subscribed users. We stress here 
the key fact of using CellMD on a PS3, as one single pulling 
experiment simulation lasts more than 14 days on a 2GHz 
Opteron PC, but just 22 hours on the PS3. This time frame 
would make our application impossible on a PC grid con-
sidering the extremely volatile on-grid-persistence of the 
average user.

a) b) 

Figure 3 (a) An example of two realizations of the forces experienced by K+ pulled trough Gramicidin A. (b) Average local work  
W reconstructed from the force over 100 binned intervals.
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Science & Society
In a volunteer-based project the participation of people is 
crucial because the capabilities of the system are directly 
proportional to the number of users it attracts. All BOINC 
projects therefore require an investment in terms of public 
dissemination and science & society interactions. 

The public interface of the PS3GRID project is the 
PS3GRID portal http://www.ps3grid.net/PS3GRID (figure 4) 
based on the server framework provided by BOINC.

It contains information on how to join the project, the 
goal of the project and provides public forums for commu-
nication between users and scientists. We have been using 
this website as the only form of advertisement for PS3GRID 
to date, but previous interest was generated by the CellMD 
code alone which was featured in the media19 due to the 
novelty of using the PlayStation 3 for molecular simulations 
demonstrated in November 2006. As a result, at the time of 
writing this article, the website is visited by over 300 new 
visitors per day and obtains a number of hits of the order 
of millions in a Google search due to the novelty of the use 
of game consoles (largely due to boincstats websites which 
aggregate user statistics over BOINC projects).

During the beta phase of the project, we have restricted 
account creation using an invitation code in order to limit 
the participants to people really interested in the project. 
Invitation codes are obtained by a simple request to a email 
address posted on the website. After only a few months since 
the beginning of the project we have over 450 registered 
users of whom over 35 are actively donating cycles from 
their PlayStation3. These numbers are short lived and grow-
ing but, of course, are not going to be comparable to other 
BOINC projects because we run exclusively on PS3s and 
require the user to install Linux on the machine. In the near 
future, PS3GRID should also be available for the native PS3 

operating system once Sony will release the BOINC client 
for the PS3 native operating system currently under devel-
opment by Sony engineers. This will give all owners of PS3 
console the ability to participate in PS3GRID without the 
need to install a new operating system.

In the beta testing phase, this user pool was able to gen-
erate a computational power of 300 personal computers, a 
sustained floating-point performance of 400 GFLOPS (for 
comparison, a single workstation can manage only approxi-
mately 1 GFLOPS when running a comparable code), 5GB 
of data, 100ns of molecular dynamics trajectories and over 
6 years of computation by a single PC. All this in a time 
window of approximately a month! 

Conclusions
We have described a computational infrastructure called 
PS3GRID based on a BOINC distributed computing server 
for the PlayStation3 and the CellMD molecular dynamics 
software optimized for full-atom molecular dynamics sim-
ulations on the Cell processor. The motivation behind this 
project lies in the fact that CellMD performs over one order 
of magnitude faster on the Cell processor compared to an 
Opteron processor at 2GHz1 and that the Sony PlayStation 
3 game console has a very large user base (3 million con-
soles sold up to date) all of whom are potentially able to 
contribute to this project. We use this computational envi-
ronment to compute K+ ion permeability for Gramicidin A, a 
first test application. Although simpler than more important 
ion channels, it remains interesting because computational 
methods have so far failed to reproduce the experimentally 
determined free energy barrier7. Our benchmarks show that 
even with a user base of just several hundred volunteers (a 
conservative estimate given the number of users of other 
mature BOINC projects) the computational throughput would 
allow us to complete numerical molecular experiments on a 
daily basis. 

PS3GRID.NET represents the first attempt to use BOINC 
and a full-atom simulation code (CellMD) for the Cell pro-
cessor1 to build a distributed molecular simulation compu-
tational environment based on game consoles, while the use 
of special processors like graphical processing units (GPUs) 
and the Cell processor for folding smaller proteins in implicit 
solvent has also been recently announced by the Folding@
home project20. Indeed, the potential of the Cell processor 
for scientific applications21 and the scope of PS3GRID are 
much wider than just this first application as it could serve 
as a computational engine for free energy calculations in ion 
channels and other proteins. In fact, CellMD and BOINC can 
compete with expensive multiprocessor high performance 
computers (HPC) in this application case opening the pos-
sibility of High Performance Network Computing (HPNC). 
However, other molecular applications of large molecular 
structures or different computational protocols would require 

Figure 4 A view of the public PS3GRID.net website. The PS3 BOINC 
client can be downloaded directly from PS3GRID.net
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supercomputers made of many Cell processors like the new 
IBM Roadrunner22 featuring 16,000 Cell processors. 

References
1.	 De Fabritiis, G. (2007) Performance of the Cell processor 

for biomolecular simulations. Comp. Phys. Comm. 176, 
660-664

2.	 Search for Extraterrestrial Intelligence at Home (2007). 
http://www.setiathome.berkeley.edu

3.	 De Fabritiis, G., Coveney, P. V. & Villà-Freixa, J. (2007). 
Title. Proteins, submitted.

4.	 Aqvist, J. & Warshel, A. (1989). Energetics of ion perme-
ation through membrane channels. Solvation of Na+ by 
gramicidin A. Biophys. J. 56, 171-182.

5.	 Roux, B. & Karplus, M. (1994). Molecular Dynamics 
Simulations of the Gramicidin Channel. Annu. Rev. Bio-
phys. Biomol. Struct. 23, 731-761.

6.	 Allen, T. W., Andersen, O. S. & Roux, B. (2006). Ion Per-
meation through a Narrow Channel: Using Gramicidin 
to Ascertain All-Atom Molecular Dynamics Potential 
of Mean Force Methodology and Biomolecular Force 
Fields. Biophys. J. 90,3447-3468.

7.	 de Groot, B. L., Tieleman, D. P., Pohl, P. & Grubmüller, H. 
(2002). Water Permeation through Gramicidin A: Des-
formylation and the Double Helix: A Molecular Dynam-
ics Study. Biophys. J. 82, 2934-2942.

8.	 Jensen, M., Park, S., Tajkhorshid, E. & Schulten, K. (2002). 
Energetics of glycerol conduction through aquaglycer-
oporin GlpF. Proc. Natl. Acad. Sci. 99, 6731-6736.

9.	 Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco, 
I. & Bustamante, C. (2005). Verification of the Crooks 
fluctuation theorem and recovery of RNA folding free 
energies. Nature 437, 231-234.

10.	 Ioan Kosztin, Bogdan Barz and Lorant Janosi, Calculat-
ing potentials of mean force and diffusion coefficients 
from nonequilibirum processes without Jarzynski's 
equality, J. Chem. Phys. 124, 064106 (2006)

	 NB – NOTE JOURNAL CHANGE. JCP doesn't use sequen-
tial page #s

11.	 Crooks, G. (1999). Entropy production fluctuation the-
orem and the nonequilibrium work relation for free 
energy differences. Phys. Rev. E. 60, 2721-2726.

12.	 IBM Cell Broadband Engine Software Development Kit 
(SDK) (2007). http://www.ibm.com/developerworks/
power/cell

13.	 Nvidia Complete Unified Device Architecture (CUDA) 
(2007). http://developer/nvidia.com/object/cuda.html

14.	 Acellera Ltd. (2007). http://www.acellera.com
15.	 IBM Cell Broadband Architectural Tutorial (2007). http://

www.research.ibm.com/cell/
16.	 Dongarra, J. (2006). The Impact of Multicore on Math 

Software and Exploiting
Single Precision Computing to Obtain Double Precision 

Results. Proceedings of the International Conference on 
Parallel Computing, ICPP2006, Columbus, Ohio, USA, 
August 14-18, 2006.

17.	 Berkeley Open Infrastructure for Network Computing 
(2007). http://www.boinc.berkeley.edu

18.	 Yellow Dog Linux for PS3 (2007). http://www.terrasoft-
solutions.com

19.	 PS3GRID Press Releases and news reports, (2007) 
http://www.ps3grid.net/PS3GRID/old_news.php

20.	 Folding@Home Website (2007). http://folding.stanford.
edu

21.	 Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P. 
& Yelick, K. (2006). The potential of Cell processor for 
scientific computing, Proceedings of the 3rd conference 
on Computing frontiers, Ischia, Italy, 2006, 9-20, Ischia, 
Italy, May 3-5.

22.	 IBM Roadrunner Supercomputer (2007). http://www.
lanl.gov/orgs/hpc/roadrunner/index.shtml


