

Rechenkraft.net2 Distributed & Grid Computing – Science Made Transparent for Everyone

Gianni De Fabritiis, Ph.D, is visiting professor at the University Pompeu
Fabra (UPF), Barcelona, Spain in the master of bioinformatics of
health sciences and member of the Computational Biochemistry and
Biophysics Laboratory in the Research Group for Biomedical Informatics
(GRIB/UPF) also in Barcelona. He holds a Ph.D. in chemistry from
University of London and Italian laurea in applied mathematics from
University of Bologna. During the period 2003-2006 he was EPRSC (UK)
research fellow for the e-Science program in the Centre for
Computational Science, Department of Chemistry, University College
London. Previously, he also worked in the CINECA supercomputing center
in Bologna, Italy.

Matt Harvey is a high performance computing systems analyst at Imperial
College London. He holds degrees in astrophysics and information
technology from University College London. During 2002-2005 he worked in
the Centre for Computational Science, UCL, first as a computing officer
on the EPSRC e-Science project RealityGrid and subsequently as a
research associate on the combinatorial materials chemistry project
FOXD. Previously, he worked as a software engineer in the financial
banking services sector. Matt is also the technical director of Red
Redemption Ltd., an award-winning interactive media company based in the UK.

Jordi Villà-Freixa, Ph.D. in chemistry (Universitat Autònoma de
Barcelona, 1998) is currently an associate professor at the Department
of Experimental and Health Sciences at the Universitat Pompeu Fabra,
where he leads the Computational Biochemistry and Biophysics
Laboratory at GRIB/IMIM/UPF. He has visited as pre – and postdoctoral
researcher the Departments of Chemistry at University of Minnesota, at
University of Southern California (holding an EMBO long term
fellowship) and at Imperial College London and is currently the
academic coordinator of the M.Sc. on bioinformatics for health sciences
at UPF/UB. He is married with the developmental biologist Berta Alsina
and father of Arnau, Maria and Ferran.

Giovanni Giupponi was awarded a Ph.D. in Physics by the University of
Leeds in 2004. He then joined the Centre of Computational Science
(CCS), University College London until May 2007. He is currently a
post-doc researcher at the Computational Biochemistry and Biophysics
Lab (CBBL), University Pompeu Fabra in Barcelona.

3Rechenkraft.netPS3GRID.NET | Introduction

PS3GRID.NET: Building
a distributed supercomputer
using the PlayStation 3

Introduction
The PlayStation 3 (PS3) games console, launched in 2006,
is the latest in Sony’s line of games consoles which have
been distinguished by their technical capabilities and inno-
vative design. In the case of the PS3, it is the first com-
modity device to contain the IBM Cell processor. The Cell
processor is remarkable for its novel multi-core architecture
that is designed to optimize the types of computation par-
ticularly common in graphical and games applications. As
well as providing a boon for gamers this processor, and thus
the PS3, is of particular interest for computational scien-
tists eager to take advantage of the cheap high-performance
computing power.

Although the Cell processor is over an order of magni-
tude faster than standard Intel or AMD processors for some
scientific applications1, it is still insufficient to satisfy the
requirements of many modern computer simulations. In the
field of molecular modeling in particular it is routine to use
hundreds of processors in a dedicated parallel computer for
a single simulation. Our goal in creating PS3GRID was to
build an infrastructure that allows us to treat a collection of
individual PS3 consoles as a distributed molecular simula-
tion computational environment.

Inevitably, making efficient use of a collection of PS3
consoles is much more difficult than using dedicated high

Matt J. Harvey1, Giovanni Giupponi2, Jordi Villà-Freixa3, Gianni De Fabritiis4

1	 m.j.harvey@imperial.ac.uk Information and Communications Technologies,
Imperial College London, South Kensington, London, SW7 2AZ, UK

2	 giovanni.giupponi@upf.edu Computational Biochemistry and Biophysics Lab (GRIB-IMIM),
Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB),
C/ Doctor Aiguader 88, 08003 Barcelona, Spain

3	 jvilla@imim.es Computational Biochemistry and Biophysics Lab (GRIB-IMIM),
Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB),
C/ Doctor Aiguader 88, 08003 Barcelona, Spain

4	 gianni.defabritiis@upf.edu Computational Biochemistry and Biophysics Lab (GRIB-IMIM),
Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB),
C/ Doctor Aiguader 88, 08003 Barcelona, Spain

performance computing resources, especially as we wished
to allow owners of PS3s to volunteer spare time on their
consoles to our project. Two problems in particular required
our attention:

reliability and trust»» : because the PS3s we wish to use are
outside of our control, the pool of machines available to
us must be treated as transient: a volunteer may choose
to add or remove their PS3 at any time. Our infrastructure
must accommodate this and be able to correct for the loss
of results arising from an incomplete simulation. Addition-
ally, the results from completed simulations must be care-
fully checked to ensure that they are correct. Errors could
arise from defective hardware or from malicious users
deliberately altering the behaviour of our simulations.
loose coupling»» : high performance computing (HPC)
machines have dedicated low latency, high bandwidth
communications between processors. This allows a paral-
lel application to scale efficiently over many processing
cores. The PS3, in contrast, has only a general-purpose
ethernet network that is unsuited to supporting com-
munications sensitive parallel applications. The issue is
further exacerbated when the individual PS3s are distrib-
uted around the world and connected only via the general
Internet.

Distributed & Grid Computing – Science Made Transparent for EveryoneRechenkraft.net4

To address the first issue, we chose to employ the Berkeley
Open Infrastructure for Network Computing (BOINC) frame-
work17. It is designed explicitly for constructing distributed
computing systems from volunteered resources and fitting
our requirements perfectly. It was originally developed for
one of the first community distributed computing projects,
Seti@HOME2, and has been employed by dozens of other
projects since.

The second problem, that of efficiently using the
resources, was solved by the combination of the develop-
ment of a molecular dynamics (MD) code highly optimized
for the Cell processor1 and then by applying novel statisti-
cal techniques that allow us to achieve our goals using an
ensemble of short simulations3. This allows us to allocate
work to each PS3 independently, rather than attempt to scale
a single simulation across multiple PS3s in parallel.

The PS3 resources contributed to PS3GRID have allowed
us to perform classical molecular dynamics simulations of
biomolecular systems in far higher detail than would have
been practical even with access to dedicated HPC resources,
largely because of considerations of costs.

Molecular Dynamics of Biomolecular Systems
Molecular dynamics (MD) is a simulation methodology
which enables the modeling of very large molecular sys-
tems at an atomic level. The atoms are treated classically,
with their interactions approximated with an empirical force
field. Each atom is represented using classical equations of
motion (Newton’s equations of motion) and evolves accord-
ing to a force field which models the chemical nature of each
atom (carbon, oxygen, hydrogen and so on) in its local envi-

ronment. In principle, each atom interacts with all the others
within a certain interaction radius, as, at long distances, the
interaction between atoms is weaker. This cut-off distance
is usually between 10 to 12 Å (1 Ångstrøm is 10-10 meters).
Each step of a molecular dynamics simulation usually corre-
sponds to just 1 fs (10-15 seconds). Both factors contribute to
the large computational cost of molecular dynamics simula-
tions: bridging molecular, atomistic scales with biological
scales (micro – to milli-seconds) is therefore a big challenge
in computational biology. These characteristics of MD algo-
rithms limit simulations to modeling at most a few nanosec-
onds of the evolution of the system, even when run on HPC
systems; Many orders of magnitude less than is required to
model biological processes, which commonly occur over
timescales of micro – or milliseconds. If we manage to over-
come this limitation, then the biomedical applications of
molecular dynamics would be much broader.

The process of ion traversal across membrane channels
is particularly important for cell regulation. For the pur-
pose of testing PS3GRID, we studied this process using a
simple model of a single Gramicidin A pore in a biological
cell4. Gramicidin A is a polypeptide molecule with antibiotic
properties. It acts on the cell wall of a bacterium, creating
a trans-membrane pore that is selectively permeable to ions
(figure 1).

This disturbs the concentration of ions within the cell,
leading to cell death. Although extensively investigated,
previous computational studies have failed to recover the
energetic properties of the pore channel7.

Recently developed statistical techniques8, 9, 10 allow us to
take a novel computational protocol which, although not

a) 0.5 ns b) 0.75 ns c) 1.0 ns d) 1.2 ns

Figure 1 Four snapshots at different simulated times of the molecular dynamics trajectory of a K+ ion pulled across the channel.
The K+ ion is shown in green. The simulated time of each configuration is: a) 0.5 ns, b) 0.75 ns, c) 1.0 ns, d) 1.2 ns. Membrane structure is
not shown for clarity.

5Rechenkraft.netPS3GRID.NET | Cell Processor Architecture

Why the Cell Processor?
Historically, gains in processor performance have been
achieved primarily by rising clock speeds which has been
accomplished by ever finer fabrication processes. In recent
years, it has become increasingly difficult to continue to
increase clock speeds because of limits in process technology
and the increasing power demand of faster processing cores.
Despite this, Moore’s Law, the empirical observation that the
density of transistors on an integrated circuit doubles every
18 months has continued to hold true.

In order to continue to improve processor performance,
manufacturers have been forced to reconsider their “single
fast core” design and take advantage of the greater transis-
tor counts to build CPUs containing multiple independent
processing cores.

Although the aggregate performance of multi-core CPUs
has continued to increase, because the cores are independent
it is no longer possible for serial, single-threaded programs
to take advantage of the increased processing capability.
Instead, it is necessary for codes to be parallelized: adapted
to allow the computation to be performed concurrently on
multiple cores.

As well as the increased difficulty in making efficient
use of the cores within the processor, multi-core CPUs are
further limited by memory bandwidth. Minimizing the cost
of accessing main memory has been a long-term challenge
for processor designers and has two problems that must be
considered and that are exacerbated by multi-core architec-
tures:

latency: for modern processors, it typically takes hun-»»
dreds of clock cycles fpr main memory to respond to
a memory access request. It is now routine for proces-
sors to use fast on-die cache memories into which main
memory contents are speculatively read. However, if the
cache cannot satisfy a read request, the full cost of the
memory operation is incurred by the program. Similarly,
caches allow writes to main memory to be completed
asynchronously but cannot fully hide main memory
latency if large quantities of data are being written.
bandwidth»» : the efficiency with which a processor can
operate on large blocks of data is often limited by the rate
at which data can be transferred across the link to main
memory. If this connection has insufficient capacity, the
processor can become starved and the full cost of access-
ing memory will be incurred. As the core count increases,
the fraction of memory bandwidth available per-core
diminishes, increasing the likelihood of starvation.
The Cell processor is the first general-purpose processor

to implement a multi-core architecture that has features spe-
cifically designed to mitigate the effects of this memory wall.
This design allows the Cell processor to overlap computation
with memory access and enables carefully designed applica-
tions to hide the cost of the latter.

requiring any fewer computing resources than previous
methods, does allow us to replace a long simulation with an
ensemble of much shorter ones. In each simulation within
the ensemble, the ion is forced through the protein channel
at a much greater rate, sufficient to drive the system away
from its equilibrium. By subjecting these non-equilibrium
simulations to statistical analysis11, it is possible for us to
recover an estimate of the equilibrium free energy profile (a
fundamental thermodynamic quantity of a physical system3)
by computing averages over repeated independent runs.

The ability to recover the free energy profile from an
ensemble of simulations has important practical implica-
tions. We are now able to use multiple compute resources
simultaneously. Unfortunately, our system is still sufficiently
large that the short simulations cannot be practically per-
formed on even high-end commodity workstations, requir-
ing still 24-32 processors on dedicated HPC resources for
each run.

The PS3, with its Cell processor, and the PS3GRID infra-
structure allow us to bridge this performance gap and run
the ensemble simulations directly on undedicated, commod-
ity systems.

Cell Processor Architecture
The present version of the Cell processor comprises one gen-
eral purpose PowerPC processing element (PPE) which runs
the operating system and acts as a standard processor and
8 independent, specialized, synergistic processing elements
(SPEs). Main memory can be accessed only by the PPE core:
each SPE must use its limited in-chip local memory (local
store) of 256 KB. This memory is accessed directly without
any intermediate caching. Each core (PPE or SPE) features
a single instruction multiple data (SIMD) vector unit. The
SPEs can, in total, perform about 230 GFLOPS at 3.2 GHz for
single precision floating-point operations.

Currently, the SPEs perform floating-point operations an
order of magnitude slower in double precision than in single
precision. It is expected that the next revision of the Cell
processor will contain better support for double precision
operations. The main elements of a SPE are a data process-
ing core, also called the synergistic processing unit (SPU),
and a memory flow controller (MFC) which handles commu-
nications between main memory and the local memory of
the SPE (local store). The SPU can only access the local store
using a high bandwidth, low latency link without interme-
diate caching which can load data into the registers of the
SPU in just few clock cycles. A direct memory access (DMA)
operation managed by the MFC allows to copy data from
main memory to the local store. The DMA is initiated by the
SPE asynchronously allowing for overlapping communica-
tion (MFC) and computation (SPU), therefore partially hiding
the time of data transfer into the local store.

Distributed & Grid Computing – Science Made Transparent for EveryoneRechenkraft.net6

PC 1 SPE 2 SPE 4 SPE 6 SPE

Time (seconds) 73.3 20.4 10.9 6.07 4.47

Speed-up relative
to 2GHz Opteron

1 3.6 6.7 12.1 16.4

Speed-up relative
to 1 SPE

1 1.9 3.4 4.6

Figure 2 Performance of the CellMD software run on PS3. Execution time (top) and speed up factor (bottom) running Gramicidin A for
50 time-steps on a 2 GHz Opteron PC and 1, 2, 4 and 6 SPEs (estimates are computed over longer runs and rescaled to 50 iterations).

Optimizing for the Cell Processor
All this computational power comes at the cost of ease of
use: to make best use of the processor codes must be care-
fully multi-threaded and vectorized. The Cell processor can
be programmed as a multi-core chip with nine heteroge-
neous cores using standard ANSI C and relying on the librar-
ies from the IBM system development kit (SDK)12 to handle
communication, synchronization and SIMD computation.
The programming paradigm is an important aspect which
distinguishes the Cell processor from other specialized pro-
cessors, for example graphical processing units (GPUs). In
fact, recent products like Nvidia’s Complete Unified Device
Architecture (CUDA) SDK13 reduce the difficulty of program-
ming GPU devices by a non-standard C-like programming
language. On the contrary, the Cell processor adopts a com-
mon C approach using a set of advanced but standard pro-
gramming techniques and languages like C/C++, already in
use on standard multi-processor machines, supported by a
Cell processor-specific system library.

The overall performance is strongly dependent on the the
effective use of Cell hardware which is largely left to the
code and compiler. However, each step in the optimization
can be taken incrementally. An existing application would
run on the Cell processor by a simple re-compilation of the
code using only the PPE core, with no effort, but also with-
out advantages from a performance viewpoint. In order to
obtain the highest performance, it is necessary to use all the
SPEs, vector hardware and to adapt to the memory access
architecture.

Vectorization of the code is very important because the
SPEs are not optimized to run scalar code and handling

unaligned data. A SIMD add instruction spu_add allows the
computation of four simultaneous floating-point add opera-
tions by operating on a 128 bit data type (a vector float).
These intrinsic primitives are for the most part derived from
the more standard AltiVec instruction calls in the PowerPC
element (e.g. vec_add). The compiler automatically aligns
vector types to 16 byte memory boundaries which can then
be loaded directly into the SPE registers. Manual data align-
ment and padding are also necessary for data communica-
tions between local stores and main memory.

After vectorization of the compute-intensive parts of the
code, the work must be distributed on multiple SPEs using
multi-threaded programming techniques that entail handling
synchronization between processing threads running on the
9 processing cores of the Cell processor. The libraries of the
SDK provide several ways to control SPE threads which in
most cases are similar to other libraries providing threading
primitives. It is also best to avoid conditional branching in
the computational intensive parts of the code because SPEs
lack appropriate hardware for branch prediction.

Optimizations discussed so far would be beneficial to
standard processors as well (for instance using the stream-
ing SIMD extensions (SSE) of Intel processors). Unique to the
Cell processor is the SPE core design which makes all these
optimization steps crucial for performance and the local
store which provides very fast access to local data. The SPE
core design provides reduced power consumption and higher
clock frequencies, while the memory architecture is designed
to mitigate the high latency incurred in access main mem-
ory. This new memory architecture requires the programmer

7Rechenkraft.netPS3GRID.NET | CellMD

to consider the limited size of the local store of each SPE
and carefully plan the communication between local store
and main memory to maximize the overlap of computation
and communication. Overall, good knowledge of standard
parallel and vector programming techniques represents the
largest learning obstacle to program the Cell processor, as
well as standard multi-core chips.

CellMD
The molecular dynamics engine of this project is based on
CellMD, an MD application optimized to run on the Cell pro-
cessor1, 14. In summary, comparing the standard processor
version of the code compiled on a 2GHz Opteron based PC
with the Cell-tailored version of the software running on
an IBM Cell blade, a speedup relative to the Opteron refer-
ence system of approximately 19 times is obtained reliably
for many different molecular system sizes, even with just
2,500 atoms. A description and benchmarks of this code on
the Cell processor are reported in1. For PS3GRID, we use a
reduced version adapted to be used within the BOINC infra-
structure. Figure 2 shows benchmark results obtained run-
ning CellMD a simulation of a 30,000 atom Gramicidin A
model on a PS3.

The top graph shows the average execution time for
50 time-steps whilst the lower gives the speed-up factor
obtained running CellMD on a 2GHz Opteron PC and on a
PS3 using 1, 2, 4 and 6 SPEs.

We note that the fastest execution time (the maximum
speed-up) is obtained when running the simulation on our
development system, an IBM Cell blade server, which allows
for the use of all the 8 SPE present in a Cell processor15.
However, the PS3 seems to be faster on the same number of
SPEs. Unlike the blade server, the Cell processor in the PS3
has only 7 active SPEs. Furthermore, only 6 are available
when running Linux on the PS3.

Despite this, the speed up factor using only 6 SPEs is
greater than 16 times, still a very good performance/cost
ratio. This speedup easily balances the effort needed to put
together a distributed computing environment which can
enable us to perform molecular simulations in a distributed
environment. Also, we consider that this speed-up is criti-
cal to the successful deployment of a grid of PS3 commit-
ted to biomolecular simulations due to the intrinsic cost of
molecular simulations work units and the unreliability of the
resources in network distributed computing settings.

Although the PS3’s 256 MB of main memory is small
compared to modern workstation or server standards, it is
perfectly adequate for our application: a molecular dynam-
ics simulation of a 30,000 atom system requires less than
10 MB of dynamic storage. Whilst the PS3’s memory is suf-
ficient to allow us to model systems with approximately half
million atoms, in practice such a large simulation would be
impractically slow.

Double-precision arithmetic is often considered a pre-
requisite for serious scientific and numerical computing as it
minimizes the accumulation of round-off error and allows a
much greater range in comparison to single-precision math.
However, for molecular simulations this is not the case and
single precision furnishes a valid alternative to double pre-
cision1. In the general case, it is often possible to conduct
the majority of a computation in single-precision, reserv-
ing double precision for ill-conditioned and critical sections.
The techniques used to achieve this are described in further
detail in16.

PS3GRID
We chose the Berkeley Open Infrastructure for Network
Computing17 (BOINC) as the middleware to enable willing
PS3 users to easily share the computational burden of our
scientific application. The BOINC software platform provides
end-to-end distributed computing infrastructure that pro-
vides generic user authentication, file transfer, client-side
and work-flow management functions. Its modular structure
permits it to be easily customized for the requirements of
any given project.

A sophisticated client-side tool provides a wrapper for
the project application (the scientific payload code). This
approach minimizes the work required to adapt a code to
operate as a BOINC-aware application. However, the collab-
oration of up to tens of thousands of not-trusted contribu-
tors using a public network poses serious challenges to the
availability, stability and reliability of such an infrastruc-
ture. In order to mitigate these problems, BOINC middleware
provides solutions such as digital-signing of binaries, redun-
dant calculation and advanced work scheduling. In addition,
the BOINC code is open and can be customized for specific
projects needs. The wide BOINC user base and the increas-
ing number of computational projects (and related scientific
results) that use it demonstrate the maturity and efficiency
of such middleware.

As mentioned above, the PS3 game console has attracted
considerable interest in the high performance computing
community, sparking a variety of projects that rely on its
innovative architecture and peak performance. In particu-
lar, the implementation of our research project benefits from
the fact that Terrasoft has recently adapted its Yellow Dog
Linux (YDL)18 distribution to work on a PS3. We therefore
can install Linux on a PS3 game console, which can con-
sequently be considered as a fully functional and equipped
personal computer. More importantly, Linux acts as glue
between BOINC (client)

middleware and Cell hardware, and this allows us to fol-
low the standard procedure to set up a desktop distributed
computing project using BOINC software, which is the con-
figuration of data and scheduling servers in combination
with the arrangement of a suitable set of executable and

Distributed & Grid Computing – Science Made Transparent for EveryoneRechenkraft.net8

data files to be downloaded using the BOINC client by vol-
unteering users (see17 for details).

On the client side, each PS3 performing processing for a
BOINC project runs a BOINC client which provides a harness
in which the application code is run. The client conducts
all communications with the project servers and performs
work-unit file staging and controls when the application
code is running according to a policy set by the system’s
operator. A C API and library provides a set of routines that
the application code can use for communicating with the
BOINC client17. Each computational task farmed out to client
Cell processors via the BOINC infrastructure is an indepen-
dent entity known as a ̀ work unit’. These are specified by the
set of input files and by the names of the resultant output
files that the application code is expected to produce. The
only difference between our project and other well known
projects that use BOINC (such as SETI@Home2) is that the
underlying computing resources are PS3 game consoles
instead of personal computers. As a consequence, what we
report here can be replicated with minimal effort once other
efficient Cell-tailored software will become available.

Computational protocol
To recover the ion-channel permeability the Gramicidin A
pore, we first construct an atomistic model of the protein
embedded within a lipid bilayer representative of a cell
membrane. The system is hydrated to simulate realistic con-
ditions in the cell. A potassium ion K+ is placed within the
trans-membrane pore formed by the Gramicidin A protein.

We then apply an artificial pulling force to the ion, forc-
ing it back and forth along the channel. This forward-reverse

steered molecular dynamics protocol is based on the Crooks’
formula11. Crooks formula allows to reconstruct free energy
differences ΔA0 ––> 1 between two states from a set of non-
equilibrium molecular dynamics simulations which connect
the two equilibrium end-states. This technique is known as
steered molecular dynamics (SMD).

The total free energy profile of crossing is computed using
the protocol described by3. For each pulling experiment, the
realization of the work produced by the pulling force over
the reaction coordinate is returned. This work is computed
from the instantaneous force acting on the pulled ion at
each ion position (figure 3a).

The ion transfers the molecular forces to the pulling
spring (figure 3b) acting as a probe for the local molecular
potential energy surface which shows several binding sites
with steep forces along z. Binning the data over 100 inter-
vals we compute the average work at each bin position. Dif-
ferent runs produce different non-equilibrium realization of
the work (figure 3b) which are then averaged to obtain the
free energy.

The PS3GRID distributed computing environment par-
ticularly suits this method as many pulling simulations can
be broken into smaller work-units and off-loaded and run
simultaneously on PS3s of subscribed users. We stress here
the key fact of using CellMD on a PS3, as one single pulling
experiment simulation lasts more than 14 days on a 2GHz
Opteron PC, but just 22 hours on the PS3. This time frame
would make our application impossible on a PC grid con-
sidering the extremely volatile on-grid-persistence of the
average user.

a) b)

Figure 3 (a) An example of two realizations of the forces experienced by K+ pulled trough Gramicidin A. (b) Average local work
W reconstructed from the force over 100 binned intervals.

9Rechenkraft.netPS3GRID.NET | Science & Society

Science & Society
In a volunteer-based project the participation of people is
crucial because the capabilities of the system are directly
proportional to the number of users it attracts. All BOINC
projects therefore require an investment in terms of public
dissemination and science & society interactions.

The public interface of the PS3GRID project is the
PS3GRID portal http://www.ps3grid.net/PS3GRID (figure 4)
based on the server framework provided by BOINC.

It contains information on how to join the project, the
goal of the project and provides public forums for commu-
nication between users and scientists. We have been using
this website as the only form of advertisement for PS3GRID
to date, but previous interest was generated by the CellMD
code alone which was featured in the media19 due to the
novelty of using the PlayStation 3 for molecular simulations
demonstrated in November 2006. As a result, at the time of
writing this article, the website is visited by over 300 new
visitors per day and obtains a number of hits of the order
of millions in a Google search due to the novelty of the use
of game consoles (largely due to boincstats websites which
aggregate user statistics over BOINC projects).

During the beta phase of the project, we have restricted
account creation using an invitation code in order to limit
the participants to people really interested in the project.
Invitation codes are obtained by a simple request to a email
address posted on the website. After only a few months since
the beginning of the project we have over 450 registered
users of whom over 35 are actively donating cycles from
their PlayStation3. These numbers are short lived and grow-
ing but, of course, are not going to be comparable to other
BOINC projects because we run exclusively on PS3s and
require the user to install Linux on the machine. In the near
future, PS3GRID should also be available for the native PS3

operating system once Sony will release the BOINC client
for the PS3 native operating system currently under devel-
opment by Sony engineers. This will give all owners of PS3
console the ability to participate in PS3GRID without the
need to install a new operating system.

In the beta testing phase, this user pool was able to gen-
erate a computational power of 300 personal computers, a
sustained floating-point performance of 400 GFLOPS (for
comparison, a single workstation can manage only approxi-
mately 1 GFLOPS when running a comparable code), 5GB
of data, 100ns of molecular dynamics trajectories and over
6 years of computation by a single PC. All this in a time
window of approximately a month!

Conclusions
We have described a computational infrastructure called
PS3GRID based on a BOINC distributed computing server
for the PlayStation3 and the CellMD molecular dynamics
software optimized for full-atom molecular dynamics sim-
ulations on the Cell processor. The motivation behind this
project lies in the fact that CellMD performs over one order
of magnitude faster on the Cell processor compared to an
Opteron processor at 2GHz1 and that the Sony PlayStation
3 game console has a very large user base (3 million con-
soles sold up to date) all of whom are potentially able to
contribute to this project. We use this computational envi-
ronment to compute K+ ion permeability for Gramicidin A, a
first test application. Although simpler than more important
ion channels, it remains interesting because computational
methods have so far failed to reproduce the experimentally
determined free energy barrier7. Our benchmarks show that
even with a user base of just several hundred volunteers (a
conservative estimate given the number of users of other
mature BOINC projects) the computational throughput would
allow us to complete numerical molecular experiments on a
daily basis.

PS3GRID.NET represents the first attempt to use BOINC
and a full-atom simulation code (CellMD) for the Cell pro-
cessor1 to build a distributed molecular simulation compu-
tational environment based on game consoles, while the use
of special processors like graphical processing units (GPUs)
and the Cell processor for folding smaller proteins in implicit
solvent has also been recently announced by the Folding@
home project20. Indeed, the potential of the Cell processor
for scientific applications21 and the scope of PS3GRID are
much wider than just this first application as it could serve
as a computational engine for free energy calculations in ion
channels and other proteins. In fact, CellMD and BOINC can
compete with expensive multiprocessor high performance
computers (HPC) in this application case opening the pos-
sibility of High Performance Network Computing (HPNC).
However, other molecular applications of large molecular
structures or different computational protocols would require

Figure 4 A view of the public PS3GRID.net website. The PS3 BOINC
client can be downloaded directly from PS3GRID.net

Distributed & Grid Computing – Science Made Transparent for EveryoneRechenkraft.net10

supercomputers made of many Cell processors like the new
IBM Roadrunner22 featuring 16,000 Cell processors.

References
1.	 De Fabritiis, G. (2007) Performance of the Cell processor

for biomolecular simulations. Comp. Phys. Comm. 176,
660-664

2.	 Search for Extraterrestrial Intelligence at Home (2007).
http://www.setiathome.berkeley.edu

3.	 De Fabritiis, G., Coveney, P. V. & Villà-Freixa, J. (2007).
Title. Proteins, submitted.

4.	 Aqvist, J. & Warshel, A. (1989). Energetics of ion perme-
ation through membrane channels. Solvation of Na+ by
gramicidin A. Biophys. J. 56, 171-182.

5.	 Roux, B. & Karplus, M. (1994). Molecular Dynamics
Simulations of the Gramicidin Channel. Annu. Rev. Bio-
phys. Biomol. Struct. 23, 731-761.

6.	 Allen, T. W., Andersen, O. S. & Roux, B. (2006). Ion Per-
meation through a Narrow Channel: Using Gramicidin
to Ascertain All-Atom Molecular Dynamics Potential
of Mean Force Methodology and Biomolecular Force
Fields. Biophys. J. 90,3447-3468.

7.	 de Groot, B. L., Tieleman, D. P., Pohl, P. & Grubmüller, H.
(2002). Water Permeation through Gramicidin A: Des-
formylation and the Double Helix: A Molecular Dynam-
ics Study. Biophys. J. 82, 2934-2942.

8.	 Jensen, M., Park, S., Tajkhorshid, E. & Schulten, K. (2002).
Energetics of glycerol conduction through aquaglycer-
oporin GlpF. Proc. Natl. Acad. Sci. 99, 6731-6736.

9.	 Collin, D., Ritort, F., Jarzynski, C., Smith, S. B., Tinoco,
I. & Bustamante, C. (2005). Verification of the Crooks
fluctuation theorem and recovery of RNA folding free
energies. Nature 437, 231-234.

10.	 Ioan Kosztin, Bogdan Barz and Lorant Janosi, Calculat-
ing potentials of mean force and diffusion coefficients
from nonequilibirum processes without Jarzynski's
equality, J. Chem. Phys. 124, 064106 (2006)

	 NB – NOTE JOURNAL CHANGE. JCP doesn't use sequen-
tial page #s

11.	 Crooks, G. (1999). Entropy production fluctuation the-
orem and the nonequilibrium work relation for free
energy differences. Phys. Rev. E. 60, 2721-2726.

12.	 IBM Cell Broadband Engine Software Development Kit
(SDK) (2007). http://www.ibm.com/developerworks/
power/cell

13.	 Nvidia Complete Unified Device Architecture (CUDA)
(2007). http://developer/nvidia.com/object/cuda.html

14.	 Acellera Ltd. (2007). http://www.acellera.com
15.	 IBM Cell Broadband Architectural Tutorial (2007). http://

www.research.ibm.com/cell/
16.	 Dongarra, J. (2006). The Impact of Multicore on Math

Software and Exploiting
Single Precision Computing to Obtain Double Precision

Results. Proceedings of the International Conference on
Parallel Computing, ICPP2006, Columbus, Ohio, USA,
August 14-18, 2006.

17.	 Berkeley Open Infrastructure for Network Computing
(2007). http://www.boinc.berkeley.edu

18.	 Yellow Dog Linux for PS3 (2007). http://www.terrasoft-
solutions.com

19.	 PS3GRID Press Releases and news reports, (2007)
http://www.ps3grid.net/PS3GRID/old_news.php

20.	 Folding@Home Website (2007). http://folding.stanford.
edu

21.	 Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P.
& Yelick, K. (2006). The potential of Cell processor for
scientific computing, Proceedings of the 3rd conference
on Computing frontiers, Ischia, Italy, 2006, 9-20, Ischia,
Italy, May 3-5.

22.	 IBM Roadrunner Supercomputer (2007). http://www.
lanl.gov/orgs/hpc/roadrunner/index.shtml

